Aeroelastic analysis and structural parametric design of composite rotor blade
نویسندگان
چکیده
منابع مشابه
The AVINOR Aeroelastic Simulation Code and its Application to Reduced Vibration Composite Rotor Blade Design
The Active Vibration and Noise Reduction (AVINOR) aeroelastic simulation code for helicopter rotor blades is described. AVINOR is a research code that has been developed at UCLA and the University of Michigan for the purpose of conducting computationally efficient aeroelastic response analyses while maintaining a level of fidelity so as to be suitable for preliminary design of helicopter rotor ...
متن کاملModeling for Rotor Aeroelastic Analysis
Title of Dissertation: CFD Based Unsteady Aerodynamic Modeling for Rotor Aeroelastic Analysis Jayanarayanan Sitaraman, Doctor of Philosophy, 2003 Dissertation directed by: Associate Professor James D. Baeder Department of Aerospace Engineering A Computational Fluid Dynamics (CFD) analysis is developed for 3-D rotor unsteady aerodynamic load prediction. It is then coupled to a rotor structural a...
متن کاملNumerical aeroelastic analysis of wind turbine NREL Phase VI Rotor
This study investigated the performance and aeroelastic characteristics of a wind turbine blade based on strongly coupled approach (two-way fluid structure interaction) to simulate the transient FSI[1] responses of HAWT[2]. Aerodynamic response was obtained by 3D CFD-URANS approach and structural response was obtained by 3D Finite element method. ...
متن کاملNumerical aeroelastic analysis of wind turbine NREL Phase VI Rotor
This study investigated the performance and aeroelastic characteristics of a wind turbine blade based on strongly coupled approach (two-way fluid structure interaction) to simulate the transient FSI1 responses of HAWT2. Aerodynamic response was obtained by 3D CFD-URANS approach and structural response was obtained by 3D Finite element method. Aeroelastic responses of the blade were obtained by ...
متن کاملAeroelastic Analysis of Composite Wings
An aeroelastic stability analysis is presented for high-aspect ratio composite wings. The structural model is based on an asymptotically correct crosssectional formulation and a nonlinear geometric exact beam analysis, both derivable from 3-D elasticity. A new 2-D unsteady inflow finite-state theory is considered for the aerodynamic part of the solution. Theodorsen theory is also implemented an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Chinese Journal of Aeronautics
سال: 2021
ISSN: 1000-9361
DOI: 10.1016/j.cja.2020.09.055